Saturday, April 20, 2019
Marketing analysis and forcasting Coursework Example | Topics and Well Written Essays - 1500 words
Marketing analysis and forcasting - Coursework display caseThe data available is of Hughes Travel PLC monthly travel data collected over the span of January 1986 declination 2010. It consists of two variables, namely tote up of overseas visitors travelling to the UK and the number of UK residents travelling oversea. The era interval of data collection for both the variables is a month. As both the variable data is independent of each other, hence, we carry two univariate time series. The data does not depict a particular trend. Analysis of UK Residents Time serial publication Figure 1 of appendix A shows the month wise distribution of UK residents travelling abroad. The graph shows that highest number of UK residents travel abroad during the months of August, September, and July. The graph shows that August has had highest number of UK residents travel abroad and it has happened consistently for the past 25 years. Similarly, figure 2 of appendix A shows the cumulative data on UK residents travelling abroad on a yearly basis. The data shows a steady rise in the number of UK residents travelling abroad with the highest being year 2010. Figure 1 in appendix A also depicts that UK residents travel least(prenominal) during the months of December, January, February. ... Figure 4 of the appendix shows that the rate of Overseas UK travels has risen considerably from the previous years and it was the highest in 2010 from the past 25 years whereas the years 2007-2009 saw the lowest travelling statistics. This probably has to do with the ceding back and the credit crunch during these years. Figure 5 displays the overseas travelling statistics distributed over the 25 years. The graph distinctly shows that not once in the period of 25 years, the months of July and August have never seen a evenf both in the number of overseas travellers as compared to other months. Moreover, the graph also shows that as the years 2007-2009 were an all time low for overseas travell ers, the number of travellers declined to their lowest during the July-August of these years as well. Forecasting Methods Several vaticination manners have been developed over the years and each of them have their advantages and accuracy. We have chosen the two most(prenominal) basic and common forecasting models exponential smoothing model, and ARIMA Model. Exponential Smoothing This method is most common forecasting method for different types of time series data. It was developed by Brown and Holt. A basic approach towards time series modelling is to look at each observation as the combination of a never-ending and an error term. The value of constant would vary with time but is constant in a light interval of time. One way of modelling this is to assign greater weight to the most recent determine of the constant as compared to the older observations also termed as moving averages, which is the basis of simple exponential smoothing. by-line is the formula of simple exponen tial
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.